3.927 \(\int \frac {x^8}{\sqrt {1+x^4}} \, dx\)

Optimal. Leaf size=74 \[ -\frac {5}{21} \sqrt {x^4+1} x+\frac {1}{7} \sqrt {x^4+1} x^5+\frac {5 \left (x^2+1\right ) \sqrt {\frac {x^4+1}{\left (x^2+1\right )^2}} F\left (2 \tan ^{-1}(x)|\frac {1}{2}\right )}{42 \sqrt {x^4+1}} \]

[Out]

-5/21*x*(x^4+1)^(1/2)+1/7*x^5*(x^4+1)^(1/2)+5/42*(x^2+1)*(cos(2*arctan(x))^2)^(1/2)/cos(2*arctan(x))*EllipticF
(sin(2*arctan(x)),1/2*2^(1/2))*((x^4+1)/(x^2+1)^2)^(1/2)/(x^4+1)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 74, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.154, Rules used = {321, 220} \[ \frac {1}{7} \sqrt {x^4+1} x^5-\frac {5}{21} \sqrt {x^4+1} x+\frac {5 \left (x^2+1\right ) \sqrt {\frac {x^4+1}{\left (x^2+1\right )^2}} F\left (2 \tan ^{-1}(x)|\frac {1}{2}\right )}{42 \sqrt {x^4+1}} \]

Antiderivative was successfully verified.

[In]

Int[x^8/Sqrt[1 + x^4],x]

[Out]

(-5*x*Sqrt[1 + x^4])/21 + (x^5*Sqrt[1 + x^4])/7 + (5*(1 + x^2)*Sqrt[(1 + x^4)/(1 + x^2)^2]*EllipticF[2*ArcTan[
x], 1/2])/(42*Sqrt[1 + x^4])

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rubi steps

\begin {align*} \int \frac {x^8}{\sqrt {1+x^4}} \, dx &=\frac {1}{7} x^5 \sqrt {1+x^4}-\frac {5}{7} \int \frac {x^4}{\sqrt {1+x^4}} \, dx\\ &=-\frac {5}{21} x \sqrt {1+x^4}+\frac {1}{7} x^5 \sqrt {1+x^4}+\frac {5}{21} \int \frac {1}{\sqrt {1+x^4}} \, dx\\ &=-\frac {5}{21} x \sqrt {1+x^4}+\frac {1}{7} x^5 \sqrt {1+x^4}+\frac {5 \left (1+x^2\right ) \sqrt {\frac {1+x^4}{\left (1+x^2\right )^2}} F\left (2 \tan ^{-1}(x)|\frac {1}{2}\right )}{42 \sqrt {1+x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.01, size = 40, normalized size = 0.54 \[ \frac {1}{21} x \left (5 \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};-x^4\right )+\sqrt {x^4+1} \left (3 x^4-5\right )\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[x^8/Sqrt[1 + x^4],x]

[Out]

(x*(Sqrt[1 + x^4]*(-5 + 3*x^4) + 5*Hypergeometric2F1[1/4, 1/2, 5/4, -x^4]))/21

________________________________________________________________________________________

fricas [F]  time = 0.80, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {x^{8}}{\sqrt {x^{4} + 1}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^8/(x^4+1)^(1/2),x, algorithm="fricas")

[Out]

integral(x^8/sqrt(x^4 + 1), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{8}}{\sqrt {x^{4} + 1}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^8/(x^4+1)^(1/2),x, algorithm="giac")

[Out]

integrate(x^8/sqrt(x^4 + 1), x)

________________________________________________________________________________________

maple [C]  time = 0.01, size = 84, normalized size = 1.14 \[ \frac {\sqrt {x^{4}+1}\, x^{5}}{7}-\frac {5 \sqrt {x^{4}+1}\, x}{21}+\frac {5 \sqrt {-i x^{2}+1}\, \sqrt {i x^{2}+1}\, \EllipticF \left (\left (\frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right ) x , i\right )}{21 \left (\frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right ) \sqrt {x^{4}+1}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^8/(x^4+1)^(1/2),x)

[Out]

1/7*(x^4+1)^(1/2)*x^5-5/21*(x^4+1)^(1/2)*x+5/21/(1/2*2^(1/2)+1/2*I*2^(1/2))*(-I*x^2+1)^(1/2)*(I*x^2+1)^(1/2)/(
x^4+1)^(1/2)*EllipticF((1/2*2^(1/2)+1/2*I*2^(1/2))*x,I)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{8}}{\sqrt {x^{4} + 1}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^8/(x^4+1)^(1/2),x, algorithm="maxima")

[Out]

integrate(x^8/sqrt(x^4 + 1), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {x^8}{\sqrt {x^4+1}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^8/(x^4 + 1)^(1/2),x)

[Out]

int(x^8/(x^4 + 1)^(1/2), x)

________________________________________________________________________________________

sympy [C]  time = 1.54, size = 29, normalized size = 0.39 \[ \frac {x^{9} \Gamma \left (\frac {9}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {9}{4} \\ \frac {13}{4} \end {matrix}\middle | {x^{4} e^{i \pi }} \right )}}{4 \Gamma \left (\frac {13}{4}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**8/(x**4+1)**(1/2),x)

[Out]

x**9*gamma(9/4)*hyper((1/2, 9/4), (13/4,), x**4*exp_polar(I*pi))/(4*gamma(13/4))

________________________________________________________________________________________